Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
ACS Chem Neurosci ; 14(11): 2089-2097, 2023 06 07.
Article in English | MEDLINE | ID: covidwho-2314337

ABSTRACT

Angiotensin-converting enzyme 2 receptor (ACE2R) is a transmembrane protein expressed in various tissues throughout the body that plays a key role in the regulation of blood pressure. Recently, ACE2R has gained significant attention due to its involvement in the pathogenesis of COVID-19, the disease caused by the Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2). While ACE2 receptors serve as entry points for the novel coronavirus, Transmembrane Serine Protease 2 (TMPRSS2), an enzyme located on the cell membrane, is required for SARS-CoV-2 S protein priming. Even though numerous studies have assessed the effects of COVID-19 on the brain, very little information is available concerning the distribution of ACE2R and TMPRSS2 in the human brain, with particular regard to their topographical expression in the brainstem. In this study, we investigated the expression of ACE2R and TMPRSS2 in the brainstem of 18 adult subjects who died due to pneumonia/respiratory insufficiency. Our findings indicate that ACE2R and TMPRSS2 are expressed in neuronal and glial cells of the brainstem, particularly at the level of the vagal nuclei of the medulla and the midbrain tegmentum, thus confirming the expression and anatomical localization of these proteins within specific human brainstem nuclei. Furthermore, our findings help to define anatomically susceptible regions to SARS-CoV-2 infection in the brainstem, advancing knowledge on the neuropathological underpinnings of neurological manifestations in COVID-19.


Subject(s)
COVID-19 , Adult , Humans , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Brain Stem , Serine Endopeptidases/genetics
2.
NPJ Parkinsons Dis ; 9(1): 25, 2023 Feb 13.
Article in English | MEDLINE | ID: covidwho-2240519

ABSTRACT

Neurological manifestations are common in COVID-19, the disease caused by SARS-CoV-2. Despite reports of SARS-CoV-2 detection in the brain and cerebrospinal fluid of COVID-19 patients, it is still unclear whether the virus can infect the central nervous system, and which neuropathological alterations can be ascribed to viral tropism, rather than immune-mediated mechanisms. Here, we assess neuropathological alterations in 24 COVID-19 patients and 18 matched controls who died due to pneumonia/respiratory failure. Aside from a wide spectrum of neuropathological alterations, SARS-CoV-2-immunoreactive neurons were detected in the dorsal medulla and in the substantia nigra of five COVID-19 subjects. Viral RNA was also detected by real-time RT-PCR. Quantification of reactive microglia revealed an anatomically segregated pattern of inflammation within affected brainstem regions, and was higher when compared to controls. While the results of this study support the neuroinvasive potential of SARS-CoV-2 and characterize the role of brainstem inflammation in COVID-19, its potential implications for neurodegeneration, especially in Parkinson's disease, require further investigations.

3.
Int Rev Neurobiol ; 165: 17-34, 2022.
Article in English | MEDLINE | ID: covidwho-2060263

ABSTRACT

Coronavirus disease 2019 (Covid-19) caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection is primarily regarded as a respiratory disease; however, multisystemic involvement accompanied by a variety of clinical manifestations, including neurological symptoms, are commonly observed. There is, however, little evidence supporting SARS-CoV-2 infection of central nervous system cells, and neurological symptoms for the most part appear to be due to damage mediated by hypoxic/ischemic and/or inflammatory insults. In this chapter, we report evidence on candidate neuropathological mechanisms underlying neurological manifestations in Covid-19, suggesting that while there is mostly evidence against SARS-CoV-2 entry into brain parenchymal cells as a mechanism that may trigger Parkinson's disease and parkinsonism, that there are multiple means by which the virus may cause neurological symptoms.


Subject(s)
COVID-19 , Central Nervous System Depressants , Nervous System Diseases , Parkinson Disease , Central Nervous System , Humans , SARS-CoV-2
6.
Int Rev Neurobiol ; 165: 91-102, 2022.
Article in English | MEDLINE | ID: covidwho-2007356

ABSTRACT

Olfactory impairment is a common symptom in Coronavirus Disease 2019 (COVID-19), the disease caused by Severe Acute Respiratory Syndrome-Coronavirus 2 (SARS-CoV-2) infection. While other viruses, such as influenza viruses, may affect the ability to smell, loss of olfactory function is often smoother and associated to various degrees of nasal symptoms. In COVID-19, smell loss may appear also in absence of other symptoms, frequently with a sudden onset. However, despite great clinical interest in COVID-19 olfactory alterations, very little is known concerning the mechanisms underlying these phenomena. Moreover, olfactory dysfunction is observed in neurological conditions like Parkinson's disease (PD) and can precede motor onset by many years, suggesting that viral infections, like COVID-19, and regional inflammatory responses may trigger defective protein aggregation and subsequent neurodegeneration, potentially linking COVID-19 olfactory impairment to neurodegeneration. In the following chapter, we report the neurobiological and neuropathological underpinnings of olfactory impairments encountered in COVID-19 and discuss the implications of these findings in the context of neurodegenerative disorders, with particular regard to PD and alpha-synuclein pathology.


Subject(s)
COVID-19 , Neurodegenerative Diseases , Olfaction Disorders , Parkinson Disease , COVID-19/complications , Humans , Neurodegenerative Diseases/complications , Olfaction Disorders/diagnosis , Parkinson Disease/complications , Protein Aggregates , SARS-CoV-2 , Smell , alpha-Synuclein
7.
PLoS One ; 17(6): e0270024, 2022.
Article in English | MEDLINE | ID: covidwho-1910667

ABSTRACT

During the first wave of infections, neurological symptoms in Coronavirus Disease 2019 (COVID-19) patients raised particular concern, suggesting that, in a subset of patients, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) could invade and damage cells of the central nervous system (CNS). Indeed, up to date several in vitro and in vivo studies have shown the ability of SARS-CoV-2 to reach the CNS. Both viral and/or host related features could explain why this occurs only in certain individuals and not in all the infected population. The aim of the present study was to evaluate if onset of neurological manifestations in COVID-19 patients was related to specific viral genomic signatures. To this end, viral genome was extracted directly from nasopharyngeal swabs of selected SARS-CoV-2 positive patients presenting a spectrum of neurological symptoms related to COVID-19, ranging from anosmia/ageusia to more severe symptoms. By adopting a whole genome sequences approach, here we describe a panel of known as well as unknown mutations detected in the analyzed SARS-CoV-2 genomes. While some of the found mutations were already associated with an improved viral fitness, no common signatures were detected when comparing viral sequences belonging to specific groups of patients. In conclusion, our data support the notion that COVID-19 neurological manifestations are mainly linked to patient-specific features more than to virus genomic peculiarities.


Subject(s)
Ageusia , COVID-19 , Central Nervous System , Genomics , Humans , SARS-CoV-2/genetics
9.
Front Immunol ; 12: 736529, 2021.
Article in English | MEDLINE | ID: covidwho-1515533

ABSTRACT

Various authors have hypothesized carotid body (CB) involvement in Coronavirus Disease 2019 (COVID-19), through direct invasion or indirect effects by systemic stimuli ('cytokine storm', angiotensin-converting enzyme [ACE]1/ACE2 imbalance). However, empirical evidence is limited or partial. Here, we present an integrated histopathological and virological analysis of CBs sampled at autopsy from four subjects (2 males and 2 females; age: >70 years old) who died of COVID-19. Histopathological, immunohistochemical and molecular investigation techniques were employed to characterize Severe Acute Respiratory Syndrome - Coronavirus 2 (SARS-CoV2) viral invasion and inflammatory reaction. SARS-CoV2 RNA was detected in the CBs of three cases through Real-Time Reverse Transcription Polymerase Chain Reaction (RT-PCR). In these cases, positive immunostaining for Nucleocapsid and Spike protein were also demonstrated, mainly at the level of large roundish cells consistent with type I cells, confirming direct CB invasion. In these cases, T lymphocytes showed focal aggregations in the CBs, suggestive of local inflammatory reaction. Blood congestion and microthrombosis were also found in one of the positive cases. Intriguingly, microthrombosis, blood congestion and microhaemorrages were also bilaterally detected in the CBs of the negative case, supporting the possibility of COVID-19 effects on the CB even in the absence of its direct invasion. SARS-CoV-2 direct invasion of the CB is confirmed through both immunohistochemistry and RT-PCR, with likely involvement of different cell types. We also reported histopathological findings which could be ascribed to local and/or systemic actions of SARS-CoV-2 and which could potentially affect chemoreception.


Subject(s)
COVID-19 , Carotid Body , SARS-CoV-2 , Aged , Autopsy , COVID-19/pathology , COVID-19/virology , Carotid Body/pathology , Carotid Body/virology , Coronavirus Nucleocapsid Proteins/metabolism , Female , Humans , Male , Phosphoproteins/metabolism , RNA, Viral/analysis , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/metabolism
10.
Front Immunol ; 12: 676828, 2021.
Article in English | MEDLINE | ID: covidwho-1320577

ABSTRACT

In coronavirus disease 2019 (COVID-19), ulcerative lesions have been episodically reported in various segments of the gastrointestinal (GI) tract, including the oral cavity, oropharynx, esophagus, stomach and bowel. In this report, we describe an autopsy case of a COVID-19 patient who showed two undiagnosed ulcers at the level of the anterior and posterior walls of the hypopharynx. Molecular testing of viruses involved in pharyngeal ulcers demonstrated the presence of severe acute respiratory syndrome - coronavirus type 2 (SARS-CoV-2) RNA, together with herpes simplex virus 1 DNA. Histopathologic analysis demonstrated full-thickness lympho-monocytic infiltration (mainly composed of CD68-positive cells), with hemorrhagic foci and necrosis of both the mucosal layer and deep skeletal muscle fibers. Fibrin and platelet microthrombi were also found. Cytological signs of HSV-1 induced damage were not found. Cells expressing SARS-CoV-2 spike subunit 1 were immunohistochemically identified in the inflammatory infiltrations. Immunohistochemistry for HSV1 showed general negativity for inflammatory infiltration, although in the presence of some positive cells. Thus, histopathological, immunohistochemical and molecular findings supported a direct role by SARS-CoV-2 in producing local ulcerative damage, although a possible contributory role by HSV-1 reactivation cannot be excluded. From a clinical perspective, this autopsy report of two undiagnosed lesions put the question if ulcers along the GI tract could be more common (but frequently neglected) in COVID-19 patients.


Subject(s)
COVID-19/complications , Hypopharynx/pathology , SARS-CoV-2/isolation & purification , Ulcer/pathology , Aged , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , Autopsy , Blood Platelets/metabolism , Blood Platelets/pathology , COVID-19/mortality , COVID-19/pathology , COVID-19/physiopathology , Gastrointestinal Tract/pathology , Herpesvirus 1, Human/genetics , Herpesvirus 1, Human/isolation & purification , Humans , Hypopharynx/virology , Immunohistochemistry , Inflammation/immunology , Inflammation/metabolism , Inflammation/virology , Lymphocytes/metabolism , Monocytes/metabolism , Mucous Membrane/pathology , Muscle, Skeletal/pathology , Necrosis/pathology , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/metabolism , Thrombosis/pathology , Ulcer/virology
11.
FEBS J ; 287(17): 3681-3688, 2020 09.
Article in English | MEDLINE | ID: covidwho-960853

ABSTRACT

In coronavirus disease 2019 (COVID-19), higher morbidity and mortality are associated with age, male gender, and comorbidities, such as chronic lung diseases, cardiovascular pathologies, hypertension, kidney diseases, diabetes mellitus, and obesity. All of the above conditions are characterized by increased sympathetic discharge, which may exert significant detrimental effects on COVID-19 patients, through actions on the lungs, heart, blood vessels, kidneys, metabolism, and/or immune system. Furthermore, COVID-19 may also increase sympathetic discharge, through changes in blood gases (chronic intermittent hypoxia, hyperpnea), angiotensin-converting enzyme (ACE)1/ACE2 imbalance, immune/inflammatory factors, or emotional distress. Nevertheless, the potential role of the sympathetic nervous system has not yet been considered in the pathophysiology of COVID-19. In our opinion, sympathetic overactivation could represent a so-far undervalued mechanism for a vicious circle between COVID-19 and comorbidities.


Subject(s)
COVID-19/metabolism , Coronary Disease/metabolism , Diabetes Mellitus/metabolism , Hypertension/metabolism , Kidney Failure, Chronic/metabolism , Obesity/metabolism , Respiratory Insufficiency/metabolism , Sympathetic Nervous System/metabolism , COVID-19/mortality , COVID-19/pathology , COVID-19/virology , Comorbidity , Coronary Disease/mortality , Coronary Disease/pathology , Coronary Disease/virology , Diabetes Mellitus/mortality , Diabetes Mellitus/pathology , Diabetes Mellitus/virology , Female , Humans , Hypertension/mortality , Hypertension/pathology , Hypertension/virology , Kidney Failure, Chronic/mortality , Kidney Failure, Chronic/pathology , Kidney Failure, Chronic/virology , Male , Obesity/mortality , Obesity/pathology , Obesity/virology , Respiratory Insufficiency/mortality , Respiratory Insufficiency/pathology , Respiratory Insufficiency/virology , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Severity of Illness Index , Sex Factors , Survival Analysis , Sympathetic Nervous System/physiopathology , Sympathetic Nervous System/virology
12.
Am J Physiol Lung Cell Mol Physiol ; 319(4): L620-L626, 2020 10 01.
Article in English | MEDLINE | ID: covidwho-696494

ABSTRACT

The carotid body (CB) plays a contributory role in the pathogenesis of various respiratory, cardiovascular, renal, and metabolic diseases through reflex changes in ventilation and sympathetic output. On the basis of available data about peripheral arterial chemoreception and severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2), a potential involvement in the coronavirus disease 2019 (COVID-19) may be hypothesized through different mechanisms. The CB could be a site of SARS-CoV-2 invasion, due to local expression of its receptor [angiotensin-converting enzyme (ACE) 2] and an alternative route of nervous system invasion, through retrograde transport along the carotid sinus nerve. The CB function could be affected by COVID-19-induced inflammatory/immune reactions and/or ACE1/ACE2 imbalance, both at local or systemic level. Increased peripheral arterial chemosensitivity and reflex sympatho-activation may contribute to the increased morbidity and mortality in COVID-19 patients with respiratory, cardiovascular, renal, or metabolic comorbidities.


Subject(s)
Carotid Body/metabolism , Central Nervous System/virology , Coronavirus Infections/pathology , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/pathology , Angiotensin-Converting Enzyme 2 , Betacoronavirus , COVID-19 , Carotid Sinus/innervation , Carotid Sinus/virology , Humans , Pandemics , Renin-Angiotensin System/physiology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL